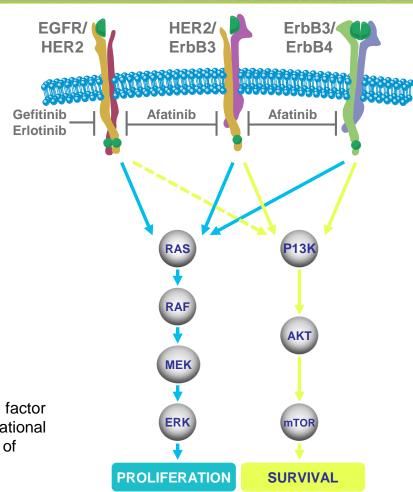
LUX-Lung 8

Background

- Squamous histology represents approximately 30% of NSCLC^{1,2}
- Limited progress and therapeutic options for patients in secondline setting
 - Targetable oncogenic alterations are limited and have not yet translated to a therapeutic paradigm
 - Patients often have extensive comorbidities
 - **Erlotinib** last drug approved (in 2005)³
 - Based on efficacy versus placebo in second-/third-line setting⁴
 - Survival benefit confirmed in subset analysis of male, ever-smokers with squamous cell carcinoma⁵

NSCLC, non small cell lung cancer

- 1. Heighway J & Betticher DC. Atlas Genet Cytogenet Oncol Haematol. 2004;8:133-6;
- 2. Bryant A., Cerfolio RJ. Chest 2007;132:185-92
- 3. Tarceva EPAR assessment EMA 2007. http://www.ema.europa.eu (Accessed 05 Sept 2014);
- 4. Shepherd FA, et al. New Engl J Med 2005;353:123–32
- 5. Clark GM, et al. Clin Lung Cancer 2006;7:389-94
- 6. Goss et al. ESMO 2014. Abstract 12220.

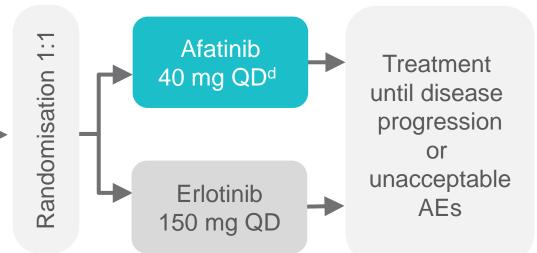

Afatinib: Irreversible ErbB Family Inhibition

- Afatinib is an irreversible ErbB-family blocker^{1,2}
 - Inhibits all kinase-active members: EGFR, HER2 and HER4
 - Proof of concept in squamous histology in various trials in lung, and head and neck cancer
 - Approved* in the major ICH regions of US,³
 EU⁴ and Japan⁵ for the treatment of patients with NSCLC harbouring distinct types of EGFR-activating mutations

EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor-2; HER4, human epidermal growth factor receptor-4; ICH, International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

*Indications differ between countries

- 1. Li D, et al. Oncogene 2008;27:4702-11; 2. Solca F, et al. J Pharmacol Exp Ther 2012;343:342-50;
- 3. Gilotrif prescribing information 2013. http://www.accessdata.fda.gov (Accessed: 05 Sept 2014);
- 4. Giotrif EPAR assessment EMA 2013. http://www.ema.europa.eu (Accessed 05 Sept 2014);
- 5. PMDA Japan new drug approvals 2013. http://www.pmda.go.jp (Accessed 05 September 2014)
- 6. Goss et al. ESMO 2014. Abstract 12220.


♠ LUX-Lung 8: Study Design

Advanced NSCLC (Stage IIIB/IV)a Squamous histology^b ≥4 cycles of a first-line platinum doubletc ECOG PS 0-1 Adequate organ function

Excluded:

Patients without PD Prior EGFR TKI or antibody Active brain metastases,

Interstitial lung disease

Stratification: East Asian versus Non-East Asian

Tumour tissue collected for correlative science

Radiographic tumour assessment at baseline, Weeks 8, 12, 16; every 8 weeks thereafter

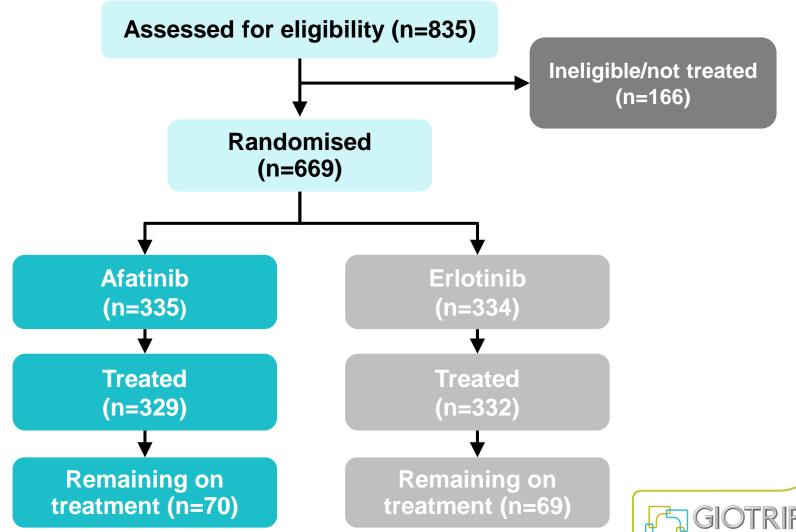
- ^aAmerican Joint Committee on Cancer staging manual 7th edition
- ^bAs determined by the Investigator, tumours with mixed histology allowed
- ^cPatients progressing within 6 months of receiving adjuvant/neoadjuvant chemo/chemoradiotherapy were allowed (as long as ≥4 cycles criterion was met)
- ^dDose escalation to 50 mg at Cycle 2 for patients meeting adverse event criteria Goss et al. ESMO 2014. Abstract 12220.



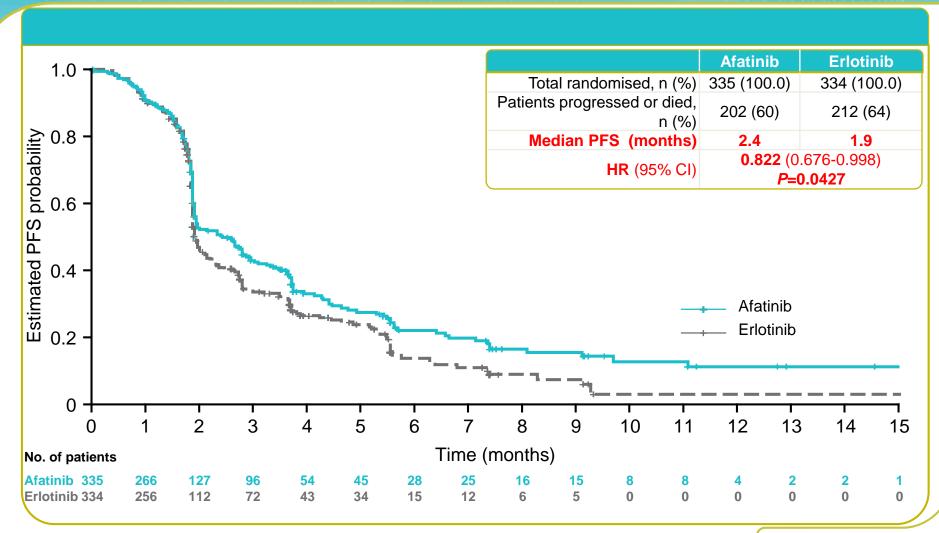
♠ Endpoints

- Primary endpoint Progression-free survival by central independent radiology review (RECIST 1.1)
- Key secondary endpoint Overall survival
- Secondary endpoints
 - Objective response rate
 - Disease control rate
 - Tumour shrinkage
 - Health-related quality of life
 - Safety in both treatment groups

Timelines and Interim Futility Analysis

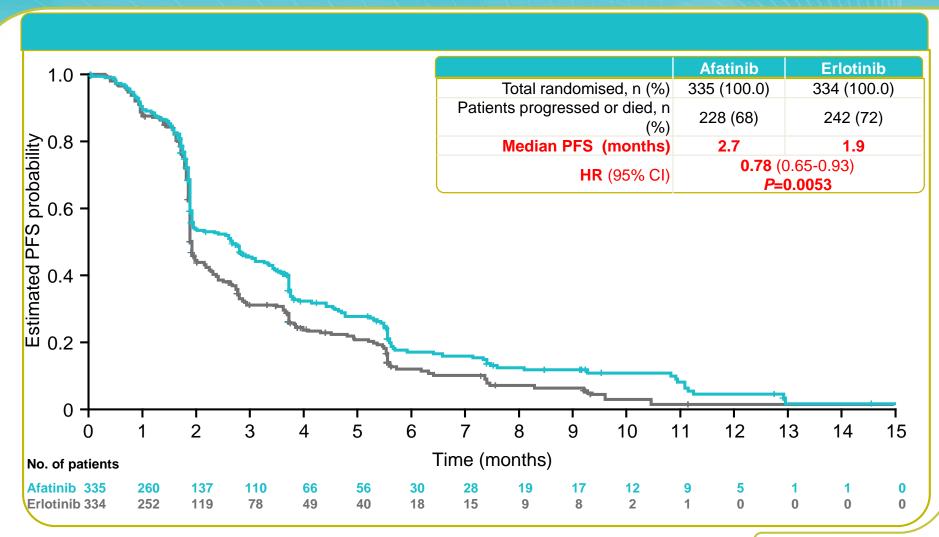

- An interim futility analysis was performed by an independent DMC and the trial was allowed to accrue to the planned 800 patients
- The PFS primary analysis was conducted when trial recruitment was ongoing

DMC, data monitoring committee; OS, overall survival; PFS, progression-free survival

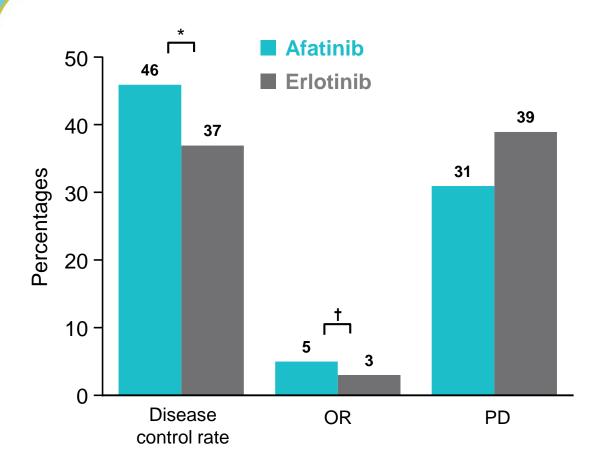


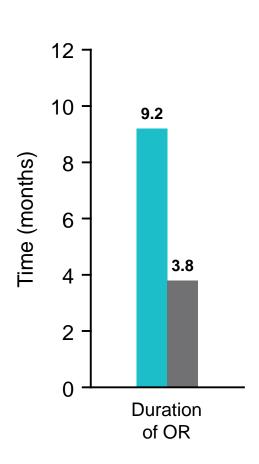
^{*}Event-dependent

Primary PFS Analysis


LUX-Lung 8: PFS (Independent Review)

CI, confidence interval; HR, hazard ratio


LUX-Lung 8: PFS (Investigator Review)



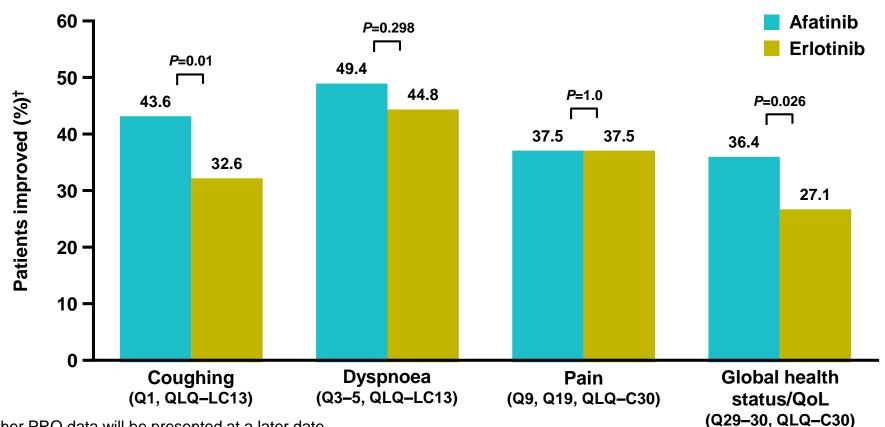
CI, confidence interval; HR, hazard ratio

LUX-Lung 8: Objective Response (Independent Review)

*Odds ratio: 1.44 95% CI (1.06–1.96); *P*-value 0.0203 †Odds ratio: 1.63 95% CI (0.73–3.66); *P*-value 0.2332

♠ LUX-Lung 8: Drug-Related AEs (>5%)

Grouped categories by CTCAE grades


	Afatinib (N=329) n, (%)			Erlotinib (N=332) n, (%)		
AE category	All	Grade 3	Grade 4§	All	Grade 3	Grade 4¶
Total with related AEs	298 (91)	75 (23)	4 (1)	266 (80)	48 (15)	1 (<1)
Diarrhoea	218 (66)	30 (9)	2 (<1)	103 (31)	7 (2)	1 (<1)
Rash/acne*	208 (63)	18 (6)		221 (67)	30 (9)	
Stomatitis*	90 (27)	11 (3)		28 (8)		
Fatigue*	44 (13)	3 (1)		43 (13)	6 (2)	
Decreased appetite	38 (12)	3 (1)		34 (10)	2 (<1)	
Nausea	38 (12)	3 (1)		24 (7)	3 (1)	
Paronychia*	35 (11)	1 (<1)		14 (4)	1 (<1)	
Pruritus	29 (9)	1 (<1)		36 (11)		
Dry skin	27 (8)†	2 (<1)		34 (10)		
Vomiting	25 (8) ‡	2 (<1)		10 (3)	2 (<1)	

^{*}Grouped terms; †8.2; ‡7.6; §Six patients (1.8%) in the afatinib treatment group had drug-related fatal AEs: interstitial lung disease (2 patients) and pneumonia, respiratory failure, acute renal failure, and general physical health deterioration (1 patient each); ¶Two patients (0.6%) in the erlotinib treatment group had drug-related fatal AEs: intersitial lung disease and peritonitis (1 patient each) Goss et al. ESMO 2014. Abstract 12220.

Proportion of patients improved[†]

- *Further PRO data will be presented at a later date
- †Based on EORTC QLQ-C30 and QLQ-LC13
- 1. Aaronson NK, et al. J Natl Cancer Inst 1996;5:365-76.
- 2. Bergman B, et al. Eur J Cancer 1994;30A:635-42.
- 3. Goss et al. ESMO 2014. Abstract 12220.

♠ LUX-Lung 8: Conclusions

- Afatinib significantly improved PFS when compared to erlotinib
 - independent and investigator reviews were consistent
- Tumour shrinkage was greater, response rate higher, and disease control rate significantly higher in the afatinib arm compared to the erlotinib arm
- Overall AE profile was consistent with mechanistic profile and was manageable
 - Rate of SAEs and ≥Grade3 AEs similar for both drugs
- Patient-reported outcomes favoured afatinib versus erlotinib
- OS data are awaited

The End